Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
Used ordering:
Polynomial interpretation [25]:
POL(__(x1, x2)) = 2·x1 + x2
POL(active(x1)) = x1
POL(and(x1, x2)) = 1 + 2·x1 + x2
POL(isNePal(x1)) = 2 + x1
POL(mark(x1)) = x1
POL(nil) = 1
POL(tt) = 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
Used ordering:
Polynomial interpretation [25]:
POL(__(x1, x2)) = 1 + 2·x1 + x2
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + 2·x2
POL(isNePal(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
mark(nil) → active(nil)
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
Used ordering:
Polynomial interpretation [25]:
POL(__(x1, x2)) = 2 + x1 + x2
POL(active(x1)) = 1 + x1
POL(and(x1, x2)) = 1 + x1 + x2
POL(isNePal(x1)) = 2 + x1
POL(mark(x1)) = 1 + 2·x1
POL(nil) = 1
POL(tt) = 2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
Used ordering:
Polynomial interpretation [25]:
POL(__(x1, x2)) = 2 + x1 + x2
POL(active(x1)) = 1 + x1
POL(and(x1, x2)) = 2 + x1 + x2
POL(mark(x1)) = 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RisEmptyProof
Q restricted rewrite system:
R is empty.
Q is empty.
The TRS R is empty. Hence, termination is trivially proven.